M2M Router PRO4®
User Manual
OpenWrt® user interface settings
v1.60
Document specifications

This document was made for the **M2M Router PRO4®** device and it contains the detailed description of OpenWrt® configuration possibilities for the proper operation of the device.
Table of contents

1. **ROUTER CONFIGURATION (OPENWRT USER INTERFACE)** .. 5
 1.1 Web user interface ... 5
 1.2 Dashboard (Main page) .. 7
 1.3 Menu overview ... 8
 1.4 System menu ... 9
 1.5 Router menu ... 9
 1.6 Services menu .. 10
 1.7 Network menu ... 10
 1.8 Users menu .. 10
 1.9 Statistics menu .. 11
 1.10 Logout menu ... 11

2. **IMPORTANT NOTES** ... 12

3. **NETWORK CONFIGURATION OF THE ROUTER** ... 14
 3.1 Interface settings .. 14
 3.2 Cellular internet settings ... 17
 3.3 USB settings (USBLAN interface) .. 18
 3.4 Ethernet (LAN) settings ... 20
 3.5 DHCP and DNS ... 23
 3.6 Defining the route rules (Static route) ... 24
 3.7 Firewall settings .. 25
 3.8 Port Forward settings .. 30
 3.9 NAT settings .. 31

4. **ADVANCED SERVICES** ... 34
 4.1 Ping IP address / checking IP ... 34
 4.2 Network Time Service (NTP) .. 35
 4.3 TFTP settings .. 36
 4.4 Identifying and connecting computers ... 38
 4.5 RS232 & RS485 Settings (Serial Proxy) .. 39
 4.6 Voice Call config .. 41
 4.7 LED configuration .. 42
1. Router configuration (OpenWrt user interface)

1.1 Web user interface

Important!
The device’s software contains a pre-configured system. Please check the configuration, and if the settings are not match with your expectations, change the configuration settings and save them.

1. The router’s local web user interface (LuCi®) is reachable through the Ethernet or the USB interface – on their default addresses.
 For the usage you have to **install the „RNDIS Driver” to your computer**, according to the Installation manual Chapter 2.4.

 Attention!
 For accessing the web user interface we recommend to use Mozilla Firefox® web browser.

2. Enter the default web user interface URL of the router.

 The **Ethernet** interface default **URL** is: https://192.168.1.1
 The **micro USB** interface’s default **URL** is: https://192.168.10.1

3. In the Mozilla browser you will get a security risk message, its not important to take care, but choose the **Advanced** option.
4. Then click on the **Accept the Risk and Continue** button to access the router’s webpage.

![Warning: Potential Security Risk Ahead](image1)

5. The OpenWRT® system’s LuCi® web interface has loaded into your browser. Now fill the **Username** and **Password** fields and click on the **Login** button for the entry.

Username: root
Password: wmrpwdM2M
1.2 Dashboard (Main page)

After you have logged in the web interface, a startup screen appears with all relevant information and the current status of the router.

At the **System** part, you can check the installed software build (**M2M Software version**) where it should be **201909051** or newer. (If it has an older version, then refresh the firmware, please.)

At the **Local Time** you can check the current time. The **Uptime** shows the spent time interval since the last bootup (or reboot).

![Dashboard screenshot](https://example.com/dashboard-screenshot)

At the **Network** part, first you can check the wireless module availability at **IPv4 WAN Status** or **IPv6 WAN Status** part, as the module’s **IMEI** identifier and the **SIM ID** identifier of the used SIM card.

The wireless network access’ current status and health, properties can be checked at **Modem RSSI** (cellular network signal strength), **Network Name**, **Network Code** and **Cell ID** is getting from the mobile operator.

The module’s wireless network address can be seen at **IPv4 WAN** or IPv6 status. There the **Type** value will show you the connection type as **2G**, **3G** or **4G LTE**.
1.3 Menu overview

By the menu you can access the following features:

- **Status** – Status data, operation Logs (system, kernel, event log), monitoring the operation (at Processes and Realtime graphs)

- **System** – System settings and administration, software installation (3rd party tools), startup settings and scheduled tasks, time synch, mount points (optional for uSD card and Flash file system), LED configuration, Firmware flashing, Backup/Restore of the configuration settings, Custom commands, Reboot of the system

- **Services** – DNS, OpenVPN settings

- **Users** – add/delete users

- **Network** – Network interface settings (Ethernet/USB LAN/Wireless module/USB Phone connection), SIM PIN change, DHCP and DNS settings, Hostname, Static routes, Bandwidth Diagnostics, Diagnostics, Firewall settings, Serial proxy (RS232 and RS485) settings, IPSEC, Voice Call configuration

- **Statistics** – system graphs and statistics settings

- **Logout** – logout and login with a different user
1.4 Status menu

- In the **Status** you can check the current status (**Overview**).
- At the **Firewall** item, you can see the firewall events and information.

![Status menu](image)

- At the **Routes** item the valid/active static route settings.
- Check system messages and event log (**System Log**, **Kernel Log**).
- Check the activities of the router (**Processes**).
- You can find monitoring features of the realtime operation at the **Realtime Graphs**.
- You also can check or download the **Event Log** here.

1.5 System menu

- You will found several system settings in the **System** and **the Administration** menu items.
- Installation of further **Software** (3rd party tools, applications for the Linux distribution).
- You can define the **Startup** applicatons
- Initialization of programs can be configured during the operation and the **Scheduled Tasks**.

![System menu](image)

- Setup the NTP server for **Time Synchronisation**.
The **Mount Points** are showing the available (mounted) shares and drives of the uSD card or connected USB driver and the Linux file system (flash).

The **LED Configuration** is also configurable for custom needs.

You also can **Backup** and restore your system configuration, applying **Flash firmware** updates.

Custom Commands for defining some commands to execute.

Reboot menu: restarting the device.

1.6 Services menu

Here you can define settings for

- **DynDNS** service
- **OpenVPN** tunnel settings for the system

1.7 Users menu

- You can define or modify, delete **Users** for allowing to access the system
- Define **periodic ping** (for QoS check) or **periodic reboot** (for industrial standard or safety reasons).

1.8 Network menu

- Here you can configure the settings of each network **Interfaces**
- You can change the **SIM PIN Change** settings here.
- You can define the **Modem settings** here for the wireless LTE connection.
- You can modify the **DHCP and DNS** settings.
- Define **Hostname** for the router.
The Static route paths can be also defined.

At the Bandwith Diagnostics item, you can configure a diagnostic address for testing the communication health.

At the Diagnostics menu, you can check network access (ping, traceroute, nslookup).

The Firewall rules can be declared here as the following submenu items: Port forward, IP route, NAT settings.

Also you can configure the RS232 and RS485 port communication settings at the Serial Proxy menu.

The Voice Call Config menu is usable for remote control of the router (e.g. remote restart).

1.9 Statistics menu

- And check the statistics Graphs - you can test the network operation and connection health by the ping an IP address for the interfaces.
- Here you can Setup the system Statistics

1.10 Logout menu

This menu item will allow you to log out from the OpenWrt® environment in your computer browser.
2. Important notes

- By security reasons, we do recommend to change the web user interface login and password as soon as you can.
- The DUAL SIM mode is currently inactive (feature is under development).
- The IPv6 protocol is disabled for the LAN interfaces by default, change it if you want to use it instead of the IPv4 protocol. Use the Network / Interfaces menu LAN1..LAN4 interface and the IPv6 relevant fields.
- The DHCP service is active for all interfaces, therefore the device will giving IP addresses for the LAN1..LAN4 connected devices, but the protocol which is used, configured for static IP addresses for the ethernet interfaces. If you want to use and distribute IP addresses by DHCP, change its protocol to DHCP client. You can change its settings in the Network / DHCP and DNS settings menu or in the Network / Interfaces menu, LAN interface and DHCP section.
- The Firewall service is active by default (by security reasons), therefore all communication is disabled excluding the used ethernet, DHCP, DNS and WAN channels, web port and the necessary services and ports for normal operation for the router.
- We recommend you to disable all ports and protocols in the firewall which you are not using actively or which are not necessary to the connection and data transmitting by respecting the ports which are necessary for the general operation. Use to check Status / Firewall menu to check the data throughput and the Network / Firewall to configure new roles.
- The firewall is not protecting the router against external network or DoS attacks, if you just enable the firewall feature. For a massive and advanced safety, you have to customize the settings by harmonized with you used current network and connection settings.
- We offer to check the network traffic on your router frequently by the Status / Firewall menu option to be ensured that all of your connections and active communication channels (port number, incoming IP) are using only the wanted paths and routes and listening the defined incoming activities and consequently occuring the estimated output traffic.
- We offer to measure your throughput data and network traffic (by minutes, hours) – use the Status / Realtime Graphs or Statistics / Graphs and calculate the estimalbe data transmitting amount according your expectations and the data limits of the used SIM card.
- If you need, you can choose dedicated wireless service type or automatic mode (using which is accessible). Therefore you can limit your data transmitting for 3G instead of 4G – for
example. Use the **Network / Interfaces menu**, **WAN** interface, **Edit** button and **Service Type** field.

- The available **APN settings** will be assured by the SIM card provider mobile operator or your mobile internet service provider. Ask them about **APN**, password, **SIM PIN** and further necessary information. You can configure these in the **Network / Modem** settings menu.

- When configuring the **SIM** or **APN** settings, after the save settings on the router, it will not restart the module automatically with the new settings. You need to restart the module by the **Restart WAN** button in the OpenWrt® menu at **Network / Modem settings**.

- In case of network outage, the wireless and cabled network connections, sessions will be reconnected soon, data will be received and transmitted automatically (by the settings) as the power source was established. **RS232, RS485** data will be received automatically again.

- You can configure **RS485 data speed** rate between 300 baud and 115 200 baud, but pls. consider that max. 19 200 baud is guaranteed to receive. We offer to use 9 600 or **19 200 bps** (as they are standards also), because some connected systems can cause loss of characters/data in higher data transmitting speed rage.

- If you want to use the router without the wireless option, as a wired normal Ethernet router with RS485 extension, you can do it, by removing the **WAN** interface by the **Delete** button from the **Network / Interfaces** menu.

- The router has **service modes** by its **Reset** button – for stop, restart and applying the default configuration. You will found further information in the **Installation Guide - Service features (chapter 2.10)**.
3. Network configuration

3.1 Interface settings

The list of the available network interfaces can be found at the Network / Interfaces menu item.

The **USBLAN** interface is assigning the microUSB connection (**usb0** interface).

The **LAN** interface is assigning the Ethernet port connections (**LAN1, LAN2, LAN3, LAN4** physical interfaces, which are bridged to the **br-lan** logical interface - at Linux side).

The **WAN** interface means the wireless Internet connection (as **wwan0**) the physical 4G module.

Modifying the interface settings

At the interfaces, at right you can modify the settings with the **Edit** button.

The **Stop** button stops the communication on the current interface, the **Connect** button reconnects the related interface connection.
3.2 Cellular internet settings

The wireless module / cellular network settings of the router can be configured at the Network menu, Interfaces menu item. Open the WAN item from the interface list by the Edit button. (You can also use the Network / Modem settings – if you want to configure only the APN settings).

The wireless connection can be operated through the dynamic and static IP address (IPv4) assignment also - which is provided by your mobile operator.

At the General Setup tab, you can see the current status of the interface with transmitted data amount.

Configure the module here to the wireless internet and for the 4G LTE network connection (by the network type you want to use) for the WAN (wwan0) interface.

The value of the Protocol means the wireless Internet module.
The Service type is the used wireless settings – you can choose a communication band or you can leave it on the default value: LTE (4G) / UMTS (3G) / GPRS (2G) – which means Auto mode.

This mode grants the best speed and quality option on the network and fallback feature (the highest cellular network service is not available - e.g. when the 4G service is not available, the 3G will be used, etc).

If you have to use a dedicated network like 3G, 2G, etc., then choose the required network type. Take consider, that the fallback mode will be inactive in this mode – if you choose the LTE (4G) and it the network will be not available, there will be no 3G or 2G fallback (if the choosen network is not available, the router won’t get mobile network access). For fallback always choose the Auto mode (LTE / UMTS / GPRS).

DUAL SIM – this option is still in development.

Here you can define the APN name for the Internet connection, which is necessary to use. When you will not set any value for the APN, then the router will restart the module sequentially in every ca. 10 minutes until it is not configured properly.

Here you can define SIM card’s PIN code if it is necessary for the connection.

Note, that the PIN code which is already configured here, it cannot be seen here due to the security rules – the characters are placed by asterix signs. Just modify the PIN if you would like to change.

Attention!
The available APN settings will be assured by the SIM card provider mobile operator or your mobile internet service provider.

Important! If you need to change the PIN code, use the Network / SIM PIN Change menu item.

Here you will found some examples for the APN settings.

M2M APN (enclosed)
APN name: wm2m
Public Internet APN

APN name: net

Attention!

ALWAYS use the given APN name and password of your Mobile Operator.

ONLY for NB IoT (Vodafone GDSP SIM)

APN: nb.inetd.gdsp
APN password: (not presented)

ONLY for GDSP SIM (WM2M GDSP)

By using the GDSP SIM you have to follow the hints of the mobile operator when filling the SIM #1 APN, APN username and password fields.

In case of APN (WM2M network): wm2m.gdsp

APN username: IMSI identifier of the SIM card (number written on the SIM card, and which is usually starting with „20404” tag)
APN password: wm2m.gdsp // for using the Hungarian WM2M

For further international mobile network providers or in case of using in foreign countries this information is assured by the local GDSP SIM mobile provider.

Automatic mode

When you not set any value for the APN, the router will connect by the SIM-card automatically to the next available network’s available APN.
Authentication methods:

- The **PAP/CHAP username** and **PAP/CHAP password** settings can be also configured here – if it is required for the connection.

- If you need dialup connection for using the Internet service at your provider, set the **Dial number** value (format: *99***1#).

The **PAP/CHAP username** and **PAP/CHAP password** settings can be also configured here – if it is required for the connection.

For configuring and enabling the **roaming** settings – in **case of international or country border usage** – you may need to setup the **Mobile country code** and **Mobile network code** parameters – even if you are attempted to use only a prefered mobile network.

The international country codes can be found here: http://mcc-mnc.com

Ask your mobile operator about the available international settings.

Click to the **Save & Apply** button for saving the settings, while the device is restarting the module with the new settings and will connecting to the cellular network.

Then, you can check the data transmitting at the **Network / Interfaces** menu, when check the **WAN** interface status at the **Interfaces** part.

As you can see, the router is already connected to the cellular network, it has active data traffic and the **RX** (received data), **TX** (transmitted data) at **Packets** and **KB** (KBytes) values are growing.

At the **Advanced Settings** tab you will found further settings for the wireless module.

By default we do not offer to change these settings, only if you are special requirements at operating the mobile network communication by the router (these are the **LCP Echo** settings, the **Bring up on boot** and the **use built-in IPv6 management** parameters mainly).
If you have had changed some values here, please click upon the **Save & Apply** button for saving the settings. Then the device will reconnecting the module to the mobile network.

3.3 USB settings (USBLAN interface)

The router has an alternative LAN interface through the USB connection. The usage of this port is ideal for configuration purposes, while you can use active data communication through your LAN interfaces.
The **USBLAN** interface settings for the USB Ethernet connection, which can be performed by Network / Interfaces menu item at the **USBLAN** part, where you need to choose the button. Then choose the **General Setup** tab.

Here you can define **Protocol** (*Static address or DHCP client*) for getting IP address from a connected network device (another local router device or similar network host).

You can define the **IPv4 address** of you *static* connection.

The IPv6 addresses can be also used, but by default the setting for the router is disabled by the **IPv6 assignment length** (*disabled*). You can allow this and add the IPv6 settings too.

You can make the **USBLAN** settings according to the Ethernet (**LAN1..LAN4**) configuration parameters which are similar.

If you have had changed some values here, please click upon the **Save & Apply** button for saving the settings.

3.4 Ethernet (LAN) settings

The detailed interface settings for the **LAN1, LAN2, LAN3, LAN4** Ethernet ports can be performed by selecting the Network / Interfaces menu item.

At the **LAN** interface’s button, choose the **General Setup** tab.

By default the Ethernet IP address is *static*, the default IP address is: 192.168.1.1.). If you want to switch the **BR-LAN** interface to *dynamic* (at **Protocol** field), then the router will waiting for an IP address on the network.

Define a new **IPv4 address**, check the **IPv4 netmask** (subnet mask), **IPv4 gateway** values for your devices according to your needs – to be able to serve your connecting devices.
When changing the **Protocol** field, you need to push the **Switch protocol** button.

If you want to use the local **DHCP server** – to allow to add IP addresses by the router for the connecting external ethernet devices – then the right setting is the **Static Address**, and the **IP address** should be also changed, and you have to uncheck the **DHCP disabled** option for the **BR-LAN** interface to allow the DHCP server.

Save your settings by the **Save & Apply** button.

Then the bridged **BR-LAN** interface IP address will be changed according your request due to the new settings.
The IPv6 addresses can be also used. By default it is disabled by the IPv6 assignment length (if you want to use, Enable it).

You can find further important DHCP settings at the DHCP and DNS menu. At the General Settings tab tab you can define IP range (Start, Limit) and IPv4 netmask for your network.

3.5 DHCP and DNS settings

The DHCP service allows the automatic IP address providing for the connecting devices in the current IP segment by the router.
The DHCP settings can be found at the **Network** menu, **Interfaces** (according to the required interface), **Edit** and **Advanced Settings** tab item.

![DHCP Server](image)

Important!
The DHCP service is disabled by the factory default configuration. First, you have to enable the DHCP service for the usage and performing the further DHCP settings!

If you attempted to enable the DHCP service, uncheck the *Disable DHCP for this interface* option. Then the related parameter settings will be visible with their default settings.

The **Start** field means the starting IP address in the subnet for the connecting devices (by default 192.168.x...). You can **Limit** how many IP addresses will be provided. The router will be providing IP addresses for the connecting devices in the 192.168.x subnet within the **Start** and between the **Start+Limit** address range (especially important for WiFi).

![DHCP Server](image)

Save the settings with the **Save & Apply** button.
The DHCP and DNS settings can be achieved at **Network** menu, **DHCP and DNS** item at **General Settings**.

Below, at the **Active DHCP Leases** part you can see the list of the devices, which given their IP addresses from the router’s DHCP service (with the renewal *lease time*).

At the **Static Leases** you can add network devices by the **Add** button to be guaranteed to get the same IP address after every lease time renewal. Define a **Hostname** and the valid **MAC-Address** of the device and the required **IPv4-Address**.
When you have modified the settings, save them by the **Save & Apply** button.

3.6 Defining the route rules (Static route)

We offer to check the currently used route rules - ARP routes, and the IPv4 and IPv6 route rules which you can find in the **Status / Routes** menu.

Here you can define a new IP route rule, by the **Add** button.

These can be performed by choosing the related interface and adding the **Host-IP or Network** name, the **IPv4-Netmask**, and **IPv4-Gateway**.
To apply the new settings, **Save & Apply** your settings you made here.

3.7 Firewall settings

By default, the firewall service is active, but it allows all communication. It can be necessary to limit the traffic.

Important!

We offer to check the network traffic on your router. Check connections and active communication channels (port number, incoming IP) and listen the incoming activities and the output traffic!

We highly recommend to check the firewall settings and configure the communication to reject the unnecessary boundaries.

On the public Internet, you can have several network attack and getting unwanted communication, internet data collection by applications. These all over the unwanted network activity causes the growing the mobile network traffic and increasing the transmitted amount of data (which is unnecessarily decrease the available data package amount of the SIM card in the router).
You can check all of these at the **Status** menu, **Realtime Graphs** item at the **Connections** tab – where these can be listed.

If you'll identify some communication from an unwanted IP/port address/range, then you can disable or limit the affected port or IP-segment at the firewall setting rules to deny/prohibit this traffic by disabling the communication on it.

In the **Status** menu, **Firewall** menu item you can check the actual firewall statistic.

The **INPUT chain** means the incoming, the **OUTPUT chain** is the outgoing/transmitted and the **FORWARD chain** means the forwarded communication/traffic hereby.

You can also see the **Reject**ed chain here below.
As it can be seen, there are several communicating IP addresses on several ports for the router and subnet.

Another method for limitation is to disable all ports, to open and enable only the necessary and used communication ports, define the used IP address range by allowing exact IPs.
You can modify the firewall settings at the **Network** menu, at the **Firewall** item, **General Settings** tab.

As you can see, the communication rules are listed here by their acceptance (*Accept/Deny/Reject*) with the directions of the communication (*br-lan to wan* or other).

Here, you can check or modify these firewall rules for the communication, at the **Input** (incoming), **Output** (outgoing) and **Forward** operations one by one by **accept** it, or **reject**, **drop**.

You can **Delete** the settings or **modify**. Below, at **Zones** part you can **Add** a new rule to the current ones. You also can **Write** or **Delete** an existed rule. Save modified settings by **Save & Apply** button.

When you’d like to **add new rule to the firewall settings**, it must done **carefully**, because you can disable or tilt some ports out of the communication so easy (which ports can be used by the
device (by default) or they are necessary to existing for some network services or could required by some other running tasks). E.g. Port nr. 67 is used by DHCP service, as Port nr. 80 for web service, DNS for port nr. 53, OpenVPN at port nr. 1194 and the RS485 also uses a dedicated port).

You can add a new port (which you have configured for the relevant service) to the firewall rules by the Add button. Configure the port and save the settings. Don’t forget to delete the old, not relevant rule for the service. For modifying the Firewall settings, choose Edit button.

For a port-level filtering or interface traffic limits or Traffic Rules settings are also necessary to define!
Here you can **Enable / Disable** or **Edit**, a configured rule. When you have modified the settings, save them by the **Save & Apply** button.

3.8 Port Forward settings

Here in the **Network** menu, at the **Firewall** item, **Port Forwards** tab you can setup the port forwarding rules for the router.
You can add a new rule by the [Add] button.

Here you can define a rule with the necessary Protocols, interface (External zone and Internal zone), Ports (External ports, Internal ports) and the Internal IP address values.

When you modified the settings, save them by the [Save & Apply] button.

If you already have a forwarding rule, you can Enable/Disable, or Edit, Sort or Delete the rule.

3.9 NAT settings

In the Network menu, Firewall item, Traffic Rules tab you can setup the Traffic Rules, and the Source NAT settings.
You can add a new rule by the button and **Save & Apply** to close the upcoming window.

Here you can open ports (e.g. for TCP) for the packages, or define new forwarding rule for interfaces (New forward rule).

The **Source NAT** settings (below) can be performed for each protocol (tcp, udp), that the router allows the redirection of data –which incoming IP address and port must be redirected to which outgoing IP address and port and must be forwarded the data traffic. You also can define a port range, hereby.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Match</th>
<th>Action</th>
<th>Enable</th>
<th>Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>New SNAT rule</td>
<td>lan</td>
<td>Do not rewrite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

When you modified the settings, save them by the **Save & Apply** button.

These rules must always be defined, not to disallow the general communication.

Take care, because it is easy to enclose the router from the network or disabling the remote access.

Please, be careful when configure these settings.

Important!

Always check the standard ports, which are used by the network services and always allow these to operating (e.g. FTP: port 21, SSH/Telnet: port 22, web: port 80, DHCP: port 53, NTP time server: port 123, general network traffic on Windows: 443, etc).

The proper port filtering, routes are minimizing the communication, what could be important by safety reasons, and could decrease the open threads and risks of some safety leaks.
Always limit the access of services, and decrease the amount of the throughput communication on the network by these rules to provide the operation only for the necessary services, ports, IP addresses.

When you modified the settings, save them by the **Save & Apply** button.

At the **Network / Static Routes** menu item you can define a new route.
4. Advanced services

4.1 Ping IP address / checking IP

Open the **Network** menu, **Diagnostics** item.

Here you can check the availability of an IP address, that is it accessible (push button), is there a naming service provided, and is there response between two IPs (push button), furthermore you can query the path of the communication (by button). Then below you will get the results listed.

Important!

Check that IP addresses, which are accessible from the current IP segment and APN zone for sure (e.g. from an enclosed APN zone the router will not access the public internet, and from the public internet it will not access the enclosed M2M APN zone).

Important!

In case of M2M APN the 192.168.1.250 address can be accessed, it is possible to ping the address for checking the 4G network connection.

```plaintext
PING lede-project.org (139.59.209.225): 56 data bytes
64 bytes from 139.59.209.225: seq=0 ttl=54 time=25.050 ms
64 bytes from 139.59.209.225: seq=1 ttl=54 time=26.287 ms
64 bytes from 139.59.209.225: seq=2 ttl=54 time=26.018 ms
64 bytes from 139.59.209.225: seq=3 ttl=54 time=25.095 ms
64 bytes from 139.59.209.225: seq=4 ttl=54 time=27.842 ms
--- lede-project.org ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 25.050/26.287/27.842 ms
```
4.2 Network Time Service (NTP)

Open the **System** menu / **Time Synchronisation** item.

You can add here the refresh interval at the **Update interval (in seconds)**. Then you can define the time synch at the **Clock Adjustment’s Offset frequency**.

At the **Time Servers** part you can add NTP time servers by its **Hostname**, IP-address or server name, and **Port**.

You can add or delete a **Time server** entry.

The most NTP time servers are using the UDP Port nr. 123 for time synchronisation. You can find a NTP time servers on the Internet. Note, that the router must access the public Internet for the NTP time server sync.
Take care of using the IPv4 and IPv6 dependent time servers. Save the settings by the **Save & Apply** button.

The time zone and synchronization of the system can be achieved in the **System** menu / **System** item. Here you can define the **Timezone** and at the **Time Synchronization** part you can **Enable** or **Disable** the **NTP client** or **Provide NTP server**.

![System configuration interface](image)

4.3 TFTP settings

Open the **Network** menu, **DHCP and DNS** item, **TFTP settings** tab to allow the TFTP service.

Enable TFTP server, and define the further related parameters to make the FTP service operating for sending files to a remote or distant IP address (e.g. to a server).
If you allow to **Enable the TFTP server**, the following fields must be filled.

When you have modified the settings, save them by the **Save & Apply** button.
You can also use SFTP service to connect from the router to an IP address, by the root account and password. If you need more information about the settings, check the OpenSSH settings in Linux command line (see Chapter 9).

4.4 Identifying of connecting computers

Open the Services menu, Hostnames item.

Here you can register those machines, network devices which are using the router’s connection - for an easier identification.

You can logical names to the IP addresses of the connecting machines, which you can see as listed at the Status / Overview menu as external connected clients.

When you have modified the settings, save them by the Save & Apply button.
The local hostname for the router (which name will appear for external devices on the network), it can be changed at the **System / System** menu item, where you will find the **General Settings** tab, at the **Hostname** field you can define a unique device name – to make it easy to identify the device on the network.

4.5 Serial Proxy (RS232 and RS485 settings)

For the proper settings of the RS232 and RS485 port communication, choose the **Network menu, Serial Proxy** menu item. Here you can define the protocol conversion parameter settings, such as receiving the incoming communication in the proper format and the transparent forwarding.

For first, the **Serial Proxy** must be **Enabled** for using RS485 communication and RS232 or R485 cabling must be connected to the external measurement device or meter, from which you want to receive or collect the data.

There can be found the **Control port** part where you can **Enable** and change the **Port** number. If you want, you can use a **Software Flow Control** where you must **Enabled**, and define its **Port** number.

At the **Proxies** part, there you will find the **Name RS485** and the **Port**, which must be configured. Choose the right value for the **Protocol** here:

- **off**: no dataflow
- **raw**: full duplexity
- **rawlp**: one-direction communication
- **telnet**: for further usage
The **Baudrate** (default is 9600 bps, or you can use 19200 bps as standard for RS485). **Note that maximum 19 200 baud speed rate can be used whether of the configuration options!**

Configure the **Mode** value which can be **7E1** or **8N1** (which means in sequence: Databits / Parity / Stopbits).
You can configure similar settings for the RS232 port also.
When you modified the settings, save them by the **Save & Apply** button.

Attention! Take consider, when you are attempted to change any of the Port numbers, then after saving your settings, you need to allow these ports at the **Firewall settings (see chapter 5.9)**.

The RS232/RS485 port (RJ12 connector) pinout can be seen here. Take care on grounding when using the connection with external devices.

You can order from us an RJ12 connection special cable with the matching pinout to interconnect your external devices to the router.

4.6 Voice Call Config

At the **Network / Voice Call Config** menu item it is possible to setup commands you are attempting remote control commands.

These are provided by remote administration and management purposes of the router in case of necessary. For answering an incoming call from the validated phone number(s), the router will be running a pre-defined command, which can be:

- **Reboot** (of the router)
- **Modem hard reset** (restart the module)
- **Modem soft reset** (quickly reinitializing the module)

You can add more phone numbers and select from the pre-defined commands to execute.
When you modified the settings, save them by the **Save & Apply** button.

4.7 LED configuration

The router has 16 LEDs to assign the current operation and connection status of the device.

The **POWER INDICATION** leds (group A) and **SIGNAL STRENGTH** leds (group C) are fixed, but the further 9 LEDs are reconfigurable (**CONNECTIVITY** leds and **LAN1..LAN4** leds) in the web user interface.

The programmable LEDs has pre-defined default values (see table below), but can be free to change to other meaning/function.

For changing the LED settings, open the System menu, **LED Configuration** item. Here you can define the LED rules for the main important events as light/blink each LEDs.

By the **Name** field add a logical name (for identifying the led) and choose a physical led for the setting by the **LED Name** field, then declare the event of operation by the **Trigger** field and the interface at the **Device** (which will be valid for). All useable possibilities are listed on the web UI.
LED operations / signals which can be changed:

<table>
<thead>
<tr>
<th>Group B</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>RS232 - reserved</td>
<td>-</td>
<td>RS485 - reserved</td>
<td></td>
</tr>
<tr>
<td>LED: lg32 (modem) (by default: WAN connection)</td>
<td>LED: lg31 (usblan) (by default: USBLAN connection)</td>
<td>LED: Lr31 (panic) (by default: KERNEL (failure/panic))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green LED</td>
<td>Green LED</td>
<td>Red LED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group D

LED: lg24 (LAN1 ethernet data receive/transmit)	Green LED
LED: lg23 (LAN2 ethernet data receive/transmit)	Green LED
LED: lg22 (LAN3 ethernet data receive/transmit)	Green LED
LED: lg21 (LAN4 ethernet data receive/transmit)	Green LED

Here you find the webadmin settings of the LED settings of the router.

![LED Configuration](image)
The **Trigger** allows to choose an event type of operation. E.g. *netdev* means the network interface connection type, and **Device** identifies the related network interface. Select a **Trigger** type from list, if additional option required then additional menu will appear.

You can [Add] a LED to define or [Delete] a LED setting from the list.

The **Trigger mode** and the **Link On** can be also defined as the Transmit (Tx) or Receive (Rx) for data flow.

When you have modified the LED settings, save them by the [Save & Apply] button.
5. Maintenance

5.1 Firmware Flashing

1. Download the latest firmware from our website for the router - by using the following URL in your web browser: https://www.m2mserver.com/en/product/m2m-router-pro-4/

Choose the Downloads tab at the middle on the router’s website, then look at the Firmware part. Download the file to your computer from there.

2. Open the System menu, Backup / Flash Firmware menu item.

3. At first just by safety, backup your system before changing the firmware version (see instructions later)

4. Push Browse for selecting the compressed and downloaded firmware file (fwos-.... file with .zip extension) from your computer, then push to the Flash image button. Download the following or a newer firmware from the product website:

https://www.m2mserver.com/m2m-downloads/fwos-BE008_x_Pro4_Standard.201909051.zip
5. After the compressed firmware file upload to the router, a new window will appear where the uploaded file is checked. Then you can start the system software refresh by the **Proceed** button.

6. Then another message appears on the screen in the browser, that the refresh method has been started.
7. When beginning the firmware installation, the router’s LED lights will check the installation progress. During the whole installation KERNEL LED is continuously lighting until the finish. When the installation begins, the USBLAN LED is flashing then later lighting by **green**.

8. Later the **WAN** LED is also flashing by **green** – with the **USBLAN** led.

9. Soon, the **RS485** LED will be also flashing together with the previously listed LEDs (**green**).

10. Then as signing the progress of installation, the **RS232** LEDs will also flashing by **green**.

11. When the installation has been completed, the KERNEL LED will be blank, but all further progress leds in the line will be **green**, which signs that the installation has been over and the router was rebooted.

12. The router will be started as usually. After 40-50 seconds the interface signals (**CONNECTION** leds) will be active (if the **WAN** interface was already configured, then the **WAN** led will be also lighting after successful registration to the wireless network).

13. When the **CONNECTION** LEDs are active, then your **can login to the router**.

5.2 Restarting the device

Choose the **System / Reboot** menu item. There push the **Perform reboot** button for rebooting the router.
Then the router will be restarted, where its LED lights will assign. After 40-50 seconds it will be available again and accessible on its default address. You can login again to the web user interface.

5.3 Backup device settings

The router settings are automatically stored by the OpenWrt® system, but there can be other situations when you need to restore the settings to a previously saved settings. You can save these settings to your computer or restore to the device anytime, by following the next hints.

Open the **System** menu, **Backup / Flash Firmware** menu.

To backup your system settings into an archive file, choose a the **Backup / Restore** part, the **Download backup** and push the **Generate archive** button. It is saving current settings to a compressed file to your computer (with .tar.gz extension). This is very useful during the first configurations.

A pop-up message will appear to save the archive file to your computer. **Save** the file, please.

IMPORTANT! After the next reboots, the system will always starting with these stored settings – as a new default configuration.
Note that the device stores only its own settings and components! If you have installed 3rd party applications or using your own scripts, the system WILL NOT BACKUP these and these are not part of the compressed backup file! You must save all the additional files, scripts and directories manually by your own.

You can include or exclude your files and directories in your backup process by using the Configuration tab here. You can edit the list with all necessary directories you need.

Of course, you need to know the router’s file system to make it right. Therefore, we offer to check the OpenWrt® system structure, directories by standard Linux-side commands from the CLI. When you are ready with the modifications, push the Submit button for the changes.
At the **Actions** tab, you can **Create default configuration** feature allows you to save the current configuration as a last known good configuration for saving by the button.

Then the device will backup the configuration to the router. A popup window will appear, where you have to push **OK**.

5.4 Restore the settings

You can **Restore default configuration** – your previously saved system configuration archive – as a saved last good know configuration - from your router.

For this, just push the button if you want to restore a previously saved (factory default) configuration. A popup window will appear, where push **OK** if you want the restore the default configuration. The device uses your previous backup as valid configuration and will continue its operation regarding the stored settings.

For making a **complete restore** from your computer (.tar.gz. format) to the router, open the **System** menu, **Backup / Flash Firmware** item.
By the **Restore backup** option you can restore a previously saved system configuration archive – which was saved to your computer – to the router and apply.

Push the **Browse** button at **Restore backup** part and choose the previously saved archive file (tar.gz extension compressed file) from your computer and then push the button.

Then the system will reload the saved backup the saved archive file content from your computer to the router apply by restoring the system, then afterall the router will restart the system and applying the previously used system.

Important!

Note that your custom saved settings must be loaded seperately – it won’t be restored automatically.

You can also restore the *default configuration* or the *factory configuration* of the router manually by the **Reset** button - without using the OpenWrt® web interface. For more information, please Check the *Installation Guide, Service Features* part.
6. Administration

6.1 Password change

Open the System / Administration menu.

At the Router Password part you can fill the Password and confirm it at the Confirmation field.

IMPORTANT NOTES

- The password must contain min. 8 characters, lowercase and uppercase letters and numbers or special characters are allowed.
- It is obligatory to use passwords by using minimum 3 special characters (upper case, numbers or special characters (e.g. underline)
- The currently used Password cannot be seen here due to some security rules – the characters shown as are empty here.
- When you are changing the password, the written characters will be placed by asterix signs.

You are able to limit the numbers the Unsuccessful Login Attempts and you can make the Login Blocked for a while (in 6 piece of 10 minutes-steps between 1 to 6).

When you have modified the settings, save them by the Save & Apply button.

Now, you will be able to login with the new password.
6.2 Logging

Open the **System / System** menu find the **Logging** tab.

There you can define a log file (**Write system log file**) and the level of logging (**Log output level**).

You also are able to limit the log file size (**System log buffer size**), and you can define an **External system log server** (IP address) and its **port, protocol** for sending the log files for a distant IP address.

The **Log output level** can be also defined for the added log file (**Write system log to a file**) – filename should be added with directory path.

When you have modified the settings, save them by the **Save & Apply** button.

Remember that you can use further log features from the **Status** menu, where the **System log**, the **Kernel Log** helps you to understand what is happening on the router currently since its last reboot, you also can check the proper operation at these menus.

The **System / Event Log** menu item will also help you to list (**Run**) or **Download** the recorded events to your computer.

When you are checking the event log, you can define an interval for identifying the events within a period by the **From:** and **To:** parameters. (Use the date (**YYYY-MM-DD**) and time...
(hh:mm:ss) values if you would like to filter the listing.) Sure, it’s not obligatory to define the whole datetime format, you can use just years and month or else.

6.3 Language settings

Open the System / System menu find the Language and Style tab.

Here you can choose a pre-defined Language for the web user interface by selecting an item from the list.

The Auto preference means that the OpenWrt® UI language will be configured according to your browser language settings (e.g. for English will be configured to English).

Push to the Save & Apply button when you have changed the language, then the new language translated texts will appear.
6.4 User management

The device can handle multiply user accounts for accessing the system or the web and limit the permissions, defining roles.

This makes the router able to providing a multi-user capable environment, which is supporting the workgroups, to execute tasks for the users (e.g. administrator role, installer, maintenance group, report maker roles, etc.).

Choose the **Users** menu / **Edit Users** menu item for the user settings.

Here you can **Add New User** by its button. Then a new window will appear.
Define **User Name** and select a **User Group** for the permission / entry-level.

Then choose the required **Menu** items by *enabling* the related checkboxes to provide the required menus for the role of the user account.

Then, the selectable sub-menus will be appearing, where you can grant a more detailed permission for the menu items by selecting the sub-items.

Certainly, only the configured menu items and permissions will be valid for the configured user account.

You can also grant **SSH** access permission to the account.

When you have finished, push to the **Save & Apply** button for saving the new account settings.

Now, as you can see, the new user account is listed. Here you can **Edit** the settings of the user account or **Delete** this account from the system.

Then, after you will **Logout** from the system, the new user can **Login** with his account and able to access the declared menu items, features by his pre-defined role.

Note that the **default password** for all manually added users is the following: *wmrpwdM2M*

After, you have will login by the new user login there will be a new menu item, the **User Options**, with a **Password** menu item.

There you can change the user **Password** for unique one. Do the **Confirmation** and **Save & Apply** your settings.
Important!
The password must contain min. 8 characters, lowercase and uppercase letters and numbers or special characters are allowed.

It is obligatory to use passwords by using minimum 3 special characters (upper case, numbers or special characters (e.g. numbers)).

Note, that the current Password cannot be seen here due to some security rules – the characters shown as are empty here. When you are changing the password, the written characters will be placed by asterix signs.

6.5 Periodic ping and reboot

For matching the industrial standard requirements, you can define an time interval for periodic daily restart of the device if you want in the Services menu / Periodic Reboot item.

At the Day value, you can define how many days of period will be applied to the modem reboot. E.g. Day=2 means reboot on every second day at the Hour/Minute defined time.
If you want to use periodic ping as checking an IP address or remote server, device as checking its availability by the device if you want to use this service by accessing from the Services menu / Periodic Ping item.

Save the configured settings by the **Save & Apply** button.

6.6 Installing 3rd party applications

Open the System menu / Software menu item, find the Actions tab.
The installed packages are listed at the **Installed** tab by its **Version**.

To download the software catalog, first you have to push to the **Update lists...** button, when the **configured opkg** list will be downloaded from the repository with the list of the available applications.

Important!
*This feature is available only, when the public Internet is accessible by the SIM card and the used APN.

Enter the name of the application, which you are attempted to install to the **Download and install package** field (e.g. **MC** – which means the Midnight Commander application) if you are exactly sure about the filename.

If you want to select the file, then use the **Filter** field and enter the program name you are searching for.

![M2M-Pro4](image)

Then the list of the application with the name will be listed. Choose the package you want and choose the installation option.

After the installation of the selected package, now you can use the installed Linux application / component which you were chosen. Now you can use the installed Linux application /
component which you were installed. Open SSH terminal window to configure your new application or use it. E.g. about our example, enter the „mc“ to start the Midnight Commander tool which you were installed from the repository.

6.7 Mount points

The device is handling the connected and mounted file systems of the uSD card, connected USB devices and the internal Flash. Choose the System menu / Mount Points menu item.

![Mount Points](image)

Mount Points

Global Settings

- **Generate Config**
 - Find all currently attached filesystems and swap and replace configuration with defaults based on what was detected

- **Anonymous Swap**
 - Mount swap not specifically configured

- **Anonymous Mount**
 - Mount filesystems not specifically configured

- **Automount Swap**
 - Automatically mount swap on hotplug

- **Automount Filesystem**
 - Automatically mount filesystems on hotplug

- **Check filesystems before mount**
 - Automatically check file system for errors before mounting

Mounted file systems

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Mount Point</th>
<th>Available</th>
<th>Used</th>
<th>Unmount</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/root</td>
<td>/home</td>
<td>0.00 B / 8.50 MB</td>
<td>100% (8.50 MB)</td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>/tmp</td>
<td>121.34 MB / 122.44 MB</td>
<td>1% (1.10 MB)</td>
<td></td>
</tr>
<tr>
<td>/dev/mtdblock5</td>
<td>/overlay</td>
<td>3.20 MB / 3.56 MB</td>
<td>10% (388.00 KB)</td>
<td></td>
</tr>
<tr>
<td>overlays/overlay</td>
<td>/</td>
<td>3.20 MB / 3.56 MB</td>
<td>10% (388.00 KB)</td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>/dev</td>
<td>512.00 KB / 512.00 KB</td>
<td>0% (0.00 B)</td>
<td></td>
</tr>
</tbody>
</table>

Mount Points

Mount Points define at which point a memory device will be attached to the file system.

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Device</th>
<th>Mount Point</th>
<th>Filesystem</th>
<th>Options</th>
<th>Root</th>
<th>Check</th>
</tr>
</thead>
</table>

This section contains no values yet
There at the **Global Settings** part, you can configure the *Mount* and *Swap* areas.

The **Mounted file systems** are listed the connected and mounted devices (such as uSD card, connected USB pendrives, hard disks, USB and internal Flash). These file systems will be attached under the */mnt* directory in SSH.

Certainly, only the formatted and partitioned filesystems can be seen here.

Here you can edit the settings of a device (media) or delete a device from the list. You can also add new mount points here.

To add an inserted uSD card choose the **Add** button and choose the **Device** (/dev/sda1 as /dev/mmcblk0p1 for uSD card) and push to the **Save & Apply** button.

Then the **Back to Overview** button for the device listing. Now the mounted uSD card is listed here.
At the bottom of the screen you can define **SWAP** area for the system. It is suitable for temporary files and speed-up the file-system handling. This can be necessary when you are using a massive amount of memory and for some 3rd party applications.

6.8 Statistics

6.8.1 View the statistics reports

In the **Statistics** menu / **Graphs** menu item, you can see the current and archive statistic graphs of the router’s performance.
Choose a tab (Processor, Interface, System Load, Memory) to check the stored QoS/resource statistics.

6.8.2 Configuring statistics reports

In the Statistics menu / Setup menu item, you can configure the current statistic settings for collecting and evaluating router’s performance data and the performance graph settings.

The main screen is the Collectd Settings, where you can define the **Data collection interval** and the Linux-side settings.

When you have changed the configuration, push to the **Save & Apply** button.

The changes will be active in the next statistic cycle interval.

There are further tabs in the upper sub menu as **General Plugins**, **Network Plugins**, **Output plugins** where you can enable the collected performance items, interfaces, etc.

For example, to the wireless network statistics settings, let’s choose the **Network** tab, and there the **Wireless** tab below.
Then allow the **Enable this plugin** and enable the *wwan0* interface too.

To performing the change of the new settings, you have push to the **Save & Apply** button.

The changes will be active in the next statistic cycle interval.
Then wait a couple of minutes and go to the **Statistics** menu / **Graphs** item and check the **Interfaces** tab, where the *wwan0* interface will be now listed.

6.9 Custom commands

You can configure and initiate custom Linux commands on the router at the **System** menu, **Custom Commands** menu item.

By the **Add** button you can define a **Description** for the **Command** and the **Custom arguments** (user can define the further parameters and arguments) and the **Public access** to any user.
Here you can configure a list of custom commands as a startup script to your device. When you have modified the settings, save them by the **Save & Apply** button.

6.10 Remote access (SSH)

You can access the device remotely according the current network and firewall settings. Consider, the router can access devices or data due to the SIM card IP-segment possibilities. The same issue when you are attempted to access the router remotely: your computer must be located in the same IP segment or APN zone. (In case of public internet access, there is no limit for that.)

For the remote access you need to configure the **Network / Static route** and **Network / Firewall** settings to allow the ports, IP segment and the interfaces, subnet masksto *transmit/receive* data from the external zone.

The remote access is possible with SSH, web, by phone call or any other rule and port which you were configured.

SSH Connection

The router can be accessed through SSH connection, when it is available on its IP address – by a terminal utility (e.g. *putty*) – at the **192.168.1.1:22** (port nr. 22 for the bridged **Ethernet** port of **LAN1, LAN2, LAN3, LAN4** interfaces) or **192.168.10.1:22** (port nr. 22 for the **USB** interface).
Accept (Yes) the Putty or other SSH terminal’s Security Alert of the RSA2 key of the router to allow and trust the connection – by security reasons.

SSH login data:
Login: root Password: wmrpwdM2M

Now you are logged in, at the OpenWrt®’s command line. Here you can executing Linux commands or using scripts on the device.

6.11 UCI usage by command line

The operating system uses the embedded Micro uCLinux, kernel 4.4 version, **UCI Command line interface** – check command line compatibility before using the commands here.

The **UCI® (Unified Configuration Interface)** is an OpenWrt® API. This tool makes able the central configuration of the device and the command line configuration from the OpenWrt® system. The following daemons and services can be accessed from SSH, at the Linux command line interface. Connect the router with a terminal program at port nr. 22 by its current IP address and configure the following daemon.

The **Unified Configuration Interface (UCI®)** is an API of OpenWrt® which is also the utility to intend and to centralize the whole configuration of a device running on OpenWrt®.

You can find the UCI command line interface options, setting parameters in the UCI CLI document. For further useable commands, please check the downloadable documentation from our website: https://www.m2mserver.com/m2m-downloads/UCI_Command_Line_Reference_v2.pdf
6.12 IPSec

You can configure IPSec for tunneling at the Network / IPSEC menu item.

Here at the IPSEC part, you can setup the Listen on interface option by the button. Choose one or more interface, which you want to configure the IPSEC service.

At IKEv1 Phase1/Phase2 settings you can define and a logical name for Encryption algorithm and Hash algorithm, Diffie-Hellmann group settings for the tunnel.
Then at **Tunnel settings** part you can define and add a logical name for **Local Subnet** and **Remote Subnet** of the subnets – add the IP segment addresses please to the fields. The **IKEv1 Phase 2** name is a free to choose logical name for the tunnel connection, where the **Key exchange** method can be selected for the tunnel.

For the **Connection name** part you can **Enable/disable connection**. Add the **VPN connection’s remote gateway address** and choose **Authentication mode**, and add the „**psk key**” is to the **Secret or PSK of connection** field.
The **IKEv1 connection** mode can be *main* or *agressive*.

Add keys to the **Local gateway identifier** and **Remote gateway identifier** fields.

When you have modified the settings, save them by the **Save & Apply** button.

Important!

The used IPSEC method in the IPSEC menu has a Strongswan based operation. You can read more about the Strongswan and the useful parameters in the OpenWrt website here:

https://openwrt.org/docs/guide-user/services/vpn/ipsec/strongswan/start

The IPSEC can be also configured from UCI (command line). You can get more information about it here: https://oldwiki.archive.openwrt.org/doc/uci/ipsec

The IPSEC (Linux-side) **Strongswan** daemon can be configured by UCI here – from SSH. Some example for the settings can be found below.

The OpenVPN settings of IPSEC:

```
uci show ipsec
```

Then the current IPSEC settings will be visible in the command line (SSH):

```
root@OM2-Pro4:~ # uci show ipsec
ipsec.@ipsec[0].listen='br-LAN'
ipsec.ipsec.crypto_proposal
ipsec.ipsec1.encryption_algorithm='aes128'
ipsec.ipsec1.hash_algorithm='sha1'
ipsec.ipsec1.dh_group='modp2048'
ipsec.IPSecl-tunnel
ipsec.IPSecl.crypto_proposal='Ipscl'
ipsec.IPSecl.keyexchange='ikev2'
ipsec.IPSecl.remote
ipsec.IPSecl.enabled='0'
ipsec.IPSec.authentication_method='psk'
ipsec.IPSecl.exchange_mode='agressive'
ipsec.IPSecl.cryptor_proposal='Ipscl'
ipsec.IPSecl.tunnel='IPSecl'
```

Configuration by the next syntax and sending to commit:

```
uci set ipsec1.encryption_algorithm='aes128'

uci commit
```
6.13 OpenVPN settings

You can configure VPN tunnel at the Services menu, OpenVPN menu item. The service uses the default nr. 1194 port during its operation.

Here you will found three pre-configured instances for operating VPN connections. For activating a rule (setting), you have to Enable the instance, and then start it. You can also edit the existing settings here.

Save & Apply if you changed anything here.

Important! You can configure VPN server or client connection here. In case of choosing the VPN client, the router wants to use an existing VPN server connection – which you have to be used and you have to define the current settings here also.

Choose a profile from the pre-configured example settings - e.g. the a sample_client profile – which means a VPN client and configure its settings by the Edit button.

Then the next window appears where you can configure the VPN connection settings:
At **proto** field choose a protocol – as **udp** or **tcp**.

The **client** option needs to be checked if you want to use the VPN as VPN client. The **remote** field is here for configuring the remote server IP address (for client).

When you have modified the settings, save them by the **Save & Apply** button.

Then you will step back into the **OpenVPN** menu, where you have to **Enable** the configured entry and **start** the service by its button. Push to the **Save & Apply** again, please.

You can find more information at the OpenWrt® website about the tunneling settings here: https://wiki.openwrt.org/doc/howto/vpn.openvpn#tab__traditional_tun_server1

Further OpenVPN settings can be performed at Linux-side by the openVPN daemon and by using the supported UCI command line interface (see UCI interface for more information).

To check the OpenVPN settings from the UCI command line interface, open an SSH terminal and enter and execute the next UCI command at the command line:
Then the current arguments of the OpenVPN settings will be listed to the CLI:

To setup a listed parameter you have use the following syntax and to commit the changes to apply.

```
#uci set openvpn.sample_server.dev='tun'
#uci commit
```

6.14 Device Manager settings

The application is available through license pack constructions, please advise our sales about the license pack options.

You can get further information on our website, the Device Manager® web page.

You can use remote monitoring and management features on the router by our optional Device Manager® application.

This is continuously provides operation parameters and status (as health of network access, signal strength, QoS, etc.).
Beyond the monitoring features, it can be used as well as for maintenance and reconfiguration of devices. You can also change the firmware of the device. You can manage one or even thousands of router devices by the application.

The software needs license to use, therefore we’d like to ask you contact our sales. You will find info about the software here: https://www.m2mserver.com/en/product/m2m-device-manager/

For the configuration of the Device Manager® open the **Router / Device Manager** menu item. Configure the **DM Port Number** – by default it is the nr. 4443.
The **DM Name** is the name of the server and a unique identifier, where **DM User Name** is the server account and the **DM IP Address** (server IP) is also necessary for the connection. Push the **Save & Apply** button for saving the settings.

When you are configuring the DM, the server-side settings and the DM server must be alive. You can check the server availability by a simple ping from the router menu.

6.15 Monitoring the modem

At the **Router / Modem Parameters** menu you can define some special operation monitoring and listener parameters for the module of the router.

The **Watchdog timeout** can be declared as a modem restarting time interval trigger in case of mobile network unaccessibility.

The **Max. RSSI error count** means the possible max. error in case of continuous signal strength troubles. If it is permanently low or not available, the modem will be restarted as it is defined according the **Watchdog timeout** parameter.

![Modem Parameters](image)

When you modified the settings, save them by the **Save & Apply** button.

6.16 PIN code change

Choose the **Network / SIM PIN Change** menu item for changing the PIN code of the SIM.
Add the **Old PIN** and the **New PIN**.

When you modified the settings, save them by the **Save & Apply** button.
7. Troubleshooting

LED signals / LED activity
For understanding the LED activities, please check the Chapter 1.5 and Chapter 6.6.

Power supply
Connect a 24V DC power supply according the hints of the following figure.
Then the router must be powered on, and the PWR (Power) and ON LEDs must be lighting and the device has been started, the boot process begins.

Removing the power supply
When you are removing the DC (or AC) power supply, the PWR (Power) LED will be blank and the super-capacitor will activated inside the device, for granting temporary (internal) power supply for the router. This is possible for 5 seconds now by default settings – technically this can be setup for 30-60 seconds also.
After 5 seconds, all connections will be closed and the file systems will be unmounted until you will adding the power supply again to the modem. Then all connections will be reconnecting and the mounting points will be accessable again.

USB connection
You can access the device on microUSB-to-USB cable, there you need to connect this cable to the **USBLAN** interface of the router.
The other side of the USB cable must be connected to a computer.
Then the **USB** LED must be lighting when the cable was connected.
RS232 connection
The device is able to handle serial (RS232) connection on its RJ12 port, where you can use transparent data connection by the proper cable (order option). The serial connection and data transmission is operated by the Serial Proxy settings. The RS232 serial data traffic is signed by the RS232 LED (for Rx and Tx data also).

RS485 connection
You can make utility meter connection to the modem by connecting RS485 cable to the RJ12 connector (as RS485 interface) of the modem.
You also need to configure and enable the operation by the Serial Proxy menu a.
When data traffic is performed through the cable, the RS485 LED will be blinking during the communication (Rx and Tx) – by signing the data exchange between the router and the meter(s).

SIM-card is not detected
Turn off the router by remove the power plug (24V DC) connection.
Check that a SIM card was inserted to the SIM holder and the proper orientation of the card. Insert and push the SIM card to the holder. Start the device by reconnecting the DC power to the device.
If the problem is still occuring, ask you Mobile Operator about the SIM card is healthness and activation, APN.

SIM/APN failure
Always check the Status / Overview menu first at the SIM ID field for the current status of the SIM card. In normal case you have to see the SIM identifier there. But, in case of a problem, the SIM error message will be shown, as:

- **No SIM or SIM error** – means: there is no SIM card presented, insert an active SIM card, not inserted properly or the SIM card is wrong. Check the SIM and the insertion again.
- **Not enough RSSI value** – means: connect a proper 4G antenna to the ANTENA mount or use a better gained antenna to the device for the better RSSI value (signal strength).
- **No NW registration** – means: APN name for the SIM card is not configured well or the setting is wrong
- **Check RSSI** – antenna is not presented and/or the SIM card is not configured or wrong, Check antenna and SIM again.
During the operation, when the **WAN** LED is not lighting for long, then the device cannot be registered to the wireless network or the modem was not initiated properly. This could also caused by a wrong APN setting.

When the APN setting is not right or the network registration was not made successfully, the **SIGNAL LEVEL** bottom led blinking.

Please check SIM card insertion and orientation (after power off the device). Power on the router. Re-configure the APN and SIM settings on its local web user interface.

If the problem is still occuring, ask you Mobile Operator about the SIM card is condition and activation status, correct APN name and configure the modem with the new SIM and SIM info.

Power outage – disconnecting the ports and data connection

In case of power/electricity network outage or maintain, the wireless and RS485 meter data connection and session will be established if it was interrupted through a way and it was later established, reconnected.

Power outage

In case of an unwanted power outage, >5 seconds after the outage, the device will disconnect all sessions and connections. Then, after the establishment of the power source, the device is automatically revert to enable data transmission, builds up the network connections and mounts the data mounting points.

Cannot access the device on SSH / LuCi web interface

You tried a wrong IP address or you cannot connected to the device properly.

Check the IP address, ping the device.

Reconfigure the IP address on you PC.

For accessing the router’s web user interface we offer the Mozilla Firefox web browser only.

Try to access the router on its USB interface by your browser: https://192.168.10.1

Ensure that the router uses a SIM card and it’s **APN** is already configured and the **WAN, SIGNAL LEVEL** leds are active or not.

Default login data:

- **Username:** *root*
- **Password:** *wmrpwdM2M*
- Push to the **Login** button to access the web UI.
• Allow the accessing of the device’s default IP address in your browser by pushing to the **Special** button, then allow the safety exclusion into the pop-up window.
9. Hardware additions & settings

9.1 Supporting mini-PCIe modules

The router contains an embedded LTE module on the mainboard, but there is an optional secondary supported attachable module interface.

The additional miniPCIe interface is supporting the following wireless modules:

- Cellient® MPL200
- Quecktel® EC25
- Quecktel® EC21

Before installing the modules into the router, you have to delete the WAN interface in the Network / Interfaces menu and Save it.

In case of using the internal (secondary) module, the primary LTE module will be disabled.

Then you have to power off the router by the Reset button.

Then you have to remove the transparent plastic terminal port cover by its 2 screws and then remove the grey top plastic cover of the enclosure. Slide the cover to bottom and remove.

Insert the mPCIe module to the mPCIe connector and connect the internal U.FL antenna connector to the module and assemble plastic enclosure parts.

Power on the router by pushing the Reset button for ca. 2 seconds.

During the start of the device, the OpenWrt system will automatically detect the new mPCIe modem and creates the new WAN interface.

Don’t forget to configure the APN and SIM settings in the Network / Interface menu at WAN interface and the Edit part and Save it.

9.2 Supporting the „One-wire” interface

The router is supporting the “One-wire” standard industrial interface. If you need more information regarding on this topic, please ask us for getting the related documentation, order options.

9.3 Supporting the M-Bus meters

The router is supporting 1-250 connectable MBus meters and able to configure and receive data from them. If you need more information regarding on this topic, please ask us for getting the related documentation, order options.
10. Support

10.1 Technical Support

If you have any questions concerning the usage of the device, contact us at the following contact:

E-mail: iotsupport@wmsystems.hu Phone: +36 20 3331111

Online product support can be required here at our website:
https://www.m2mserver.com/en/support/

For the proper identification of your device, use the device’s glued sticker and its information, which contains important information for the call center.

Due to the support questions, the product identifier is important for resolve your problem. Please, when you are attempting to tell us an incident, please send us the IMEI and SN (serial number) information from the product warranty sticker (located on the front face of the product housing).

The documentation and software release for this product can be accessed via the following link:
https://www.m2mserver.com/en/products/m2m-router-pro-4/

10.2 GNU/Linux license and open source code

The router’s operating system and OpenWrt®/Luci open source code is available on our website at the product site. The router’s software is under GNU/Linux licensing.

Product URL: https://www.m2mserver.com/en/products/m2m-router-pro-4/

There at the Downloads tab at the middle on the router’s local website, at the Source Code part you will found the source code of the device’s software and GNU/Linux license notice.
11. Legal notice

©2020. WM Systems LLC.

The content of this documentation (all information, pictures, tests, descriptions, guides, logos) is under copyright protection. Copying, using, distributing and publishing is only permitted with the consent of WM Systems LLC., with clear indication of the source.

The pictures in the user guide are only for illustration purposes.

WM Systems LLC. does not acknowledge or accept responsibility for any mistakes in the information contained in the user guide.

The published information in this document is subject to change without notice.

All data contained in the user guide is for information purposes only. For further information, please, contact our colleagues.

Warning

Any errors occurring during the program update process may result in failure of the device.